enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  3. State-transition table - Wikipedia

    en.wikipedia.org/wiki/State-transition_table

    Now if the machine is in the state S 1 and receives an input of 0 (first column), the machine will transition to the state S 2. In the state diagram, the former is denoted by the arrow looping from S 1 to S 1 labeled with a 1, and the latter is denoted by the arrow from S 1 to S 2 labeled with a 0.

  4. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    The changes of state of the system are called transitions. The probabilities associated with various state changes are called transition probabilities. The process is characterized by a state space, a transition matrix describing the probabilities of particular transitions, and an initial state (or initial distribution) across the state space ...

  6. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    The matrix on the left shows how probabilities corresponding to different states can be arranged in matrix form. A state diagram for a simple example is shown in the figure on the right, using a directed graph to picture the state transitions.

  7. UML state machine - Wikipedia

    en.wikipedia.org/wiki/UML_state_machine

    Figure 7: State roles in a state transition. In UML, a state transition can directly connect any two states. These two states, which may be composite, are designated as the main source and the main target of a transition. Figure 7 shows a simple transition example and explains the state roles in that transition.

  8. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. [1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix.

  9. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.