Search results
Results from the WOW.Com Content Network
The most general notion is the union of an arbitrary collection of sets, sometimes called an infinitary union. If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A. [11] In symbols:
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
1. The difference of two sets: x~y is the set of elements of x not in y. 2. An equivalence relation \ The difference of two sets: x\y is the set of elements of x not in y. − The difference of two sets: x−y is the set of elements of x not in y. ≈ Has the same cardinality as × A product of sets / A quotient of a set by an equivalence ...
The Unicode Standard encodes almost all standard characters used in mathematics. [1] Unicode Technical Report #25 provides comprehensive information about the character repertoire, their properties, and guidelines for implementation. [1] Mathematical operators and symbols are in multiple Unicode blocks. Some of these blocks are dedicated to, or ...
The following other wikis use this file: Usage on ar.wikipedia.org تقاطع على اتحاد; Usage on de.wikipedia.org Jaccard-Koeffizient; Usage on de.wikibooks.org
So, an element belonging to both A and B appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (:) is a set , often denoted by , with an injection of each into , such that the images of these injections form a partition of (that is, each element of belongs to exactly one of these images).
The complement of the intersection of two sets is the same as the union of their complements; or not (A or B) = (not A) and (not B) not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning at least one of A or B rather than an "exclusive or" that means exactly one of A or B. De Morgan's law with set subtraction operation
The axiom of replacement allows one to form many unions, such as the union of two sets. However, in its full generality, the axiom of union is independent from the rest of the ZFC-axioms: [citation needed] Replacement does not prove the existence of the union of a set of sets if the result contains an unbounded number of cardinalities.