Search results
Results from the WOW.Com Content Network
The cover of a test booklet for Raven's Standard Progressive Matrices. Raven's Progressive Matrices (often referred to simply as Raven's Matrices) or RPM is a non-verbal test typically used to measure general human intelligence and abstract reasoning and is regarded as a non-verbal estimate of fluid intelligence. [1]
Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.
In mathematics, a Q-matrix is a square matrix whose associated linear complementarity problem LCP ... (PDF). Linear Algebra and Its Applications. 5 (1): 65 ...
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .
An essential question in linear algebra is testing whether a linear map is an isomorphism or not, and, if it is not an isomorphism, finding its range (or image) and the set of elements that are mapped to the zero vector, called the kernel of the map. All these questions can be solved by using Gaussian elimination or some variant of this algorithm.
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...