Search results
Results from the WOW.Com Content Network
The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.
A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle.
The limit that defines the exponential function converges for every complex value of x, and therefore it can be used to extend the definition of (), and thus , from the real numbers to any complex argument z. This extended exponential function still satisfies the exponential identity, and is commonly used for defining exponentiation for ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Any complex number = + can be represented by the point (,) on the complex plane. This point can also be represented in polar coordinates as ( r , θ ) {\displaystyle (r,\theta )} , where r is the absolute value of z (distance from the origin), and θ {\displaystyle \theta } is the argument of z (angle counterclockwise from the positive x -axis).
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
A split-complex number is an ordered pair of real numbers, written in the form = + where x and y are real numbers and the hyperbolic unit [1] j satisfies = + In the field of complex numbers the imaginary unit i satisfies =