enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Neural networks applied to signal processing. (IA ...

    en.wikipedia.org/wiki/File:Neural_networks...

    This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.

  6. Outline of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Outline_of_artificial...

    Artificial neural networks [40] Network topology. feedforward neural networks [44] Perceptrons; Multi-layer perceptrons; Radial basis networks; Convolutional neural network; Recurrent neural networks [45] Long short-term memory [46] Hopfield networks [47] Attractor networks [47] Deep learning; Hybrid neural network; Learning algorithms for ...

  7. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    An expanded edition was further published in 1988 (ISBN 9780262631112) after the revival of neural networks, containing a chapter dedicated to counter the criticisms made of it in the 1980s. The main subject of the book is the perceptron, a type of artificial neural network developed in the late 1950s and

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks , which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series .

  9. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...