enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:

  3. Nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Nodal_analysis

    Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.

  4. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    In principle, nodal analysis uses Kirchhoff's current law (KCL) at N-1 nodes to get N-1 independent equations. Since equations generated with KCL are in terms of currents going in and out of nodes, these currents, if their values are not known, need to be represented by the unknown variables (node voltages).

  5. Current divider - Wikipedia

    en.wikipedia.org/wiki/Current_divider

    This is because in current dividers, total energy expended is minimized, resulting in currents that go through paths of least impedance, hence the inverse relationship with impedance. Comparatively, voltage divider is used to satisfy Kirchhoff's voltage law (KVL). The voltage around a loop must sum up to zero, so the voltage drops must be ...

  6. Electrical network - Wikipedia

    en.wikipedia.org/wiki/Electrical_network

    Kirchhoff's current law: The sum of all currents entering a node is equal to the sum of all currents leaving the node. Kirchhoff's voltage law: The directed sum of the electrical potential differences around a loop must be zero. Ohm's law: The voltage across a resistor is equal to the product of the resistance and the current flowing through it.

  7. Harmonic balance - Wikipedia

    en.wikipedia.org/wiki/Harmonic_balance

    The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of ...

  8. Nodal admittance matrix - Wikipedia

    en.wikipedia.org/wiki/Nodal_admittance_matrix

    The nodal admittance matrix is a matrix such that bus voltage and current injection satisfy Ohm's law = in vector format. The entries of are then determined by the equations for the current injections into buses, resulting in

  9. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    The potential differences across the components are the same in magnitude, and they also have identical polarities. The same voltage is applied to all circuit components connected in parallel. The total current is the sum of the currents through the individual components, in accordance with Kirchhoff's current law.