enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  4. Bring radical - Wikipedia

    en.wikipedia.org/wiki/Bring_radical

    Plot of the Bring radical for real argument. In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial + +.. The Bring radical of a complex number a is either any of the five roots of the above polynomial (it is thus multi-valued), or a specific root, which is usually chosen such that the Bring radical is real-valued for real a and is an ...

  5. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The simple Durand–Kerner and the slightly more complicated Aberth method simultaneously find all of the roots using only simple complex number arithmetic. Accelerated algorithms for multi-point evaluation and interpolation similar to the fast Fourier transform can help speed them up for large degrees of the polynomial.

  6. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  7. Calculator - Wikipedia

    en.wikipedia.org/wiki/Calculator

    Calculators also have the ability to save numbers into computer memory. Basic calculators usually store only one number at a time; more specific types are able to store many numbers represented in variables. Usually these variables are named ans or ans(0). [3] The variables can also be used for constructing formulas.

  8. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]

  9. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    Moreover, there exist more informative radical expressions for n th roots of unity with the additional property [12] that every value of the expression obtained by choosing values of the radicals (for example, signs of square roots) is a primitive n th root of unity. This was already shown by Gauss in 1797. [13]