Search results
Results from the WOW.Com Content Network
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
As a result, more water is forced into the container from another inlet creating a fountain effect. The demonstration introduces concepts like solubility and the gas laws at entry level. An ammonia fountain demonstration. A different gas of comparable solubility in water, such as hydrogen chloride, can be used instead of ammonia. [2]
The reaction between a ketone and ammonia results in an imine and byproduct water. This reaction is water sensitive and thus drying agents such as aluminum chloride or a Dean–Stark apparatus must be employed to remove water. The resulting imine will react and decompose back into the ketone and the ammonia when in the presence of water.
Liquid ammonia has a very high standard enthalpy change of vapourization (23.5 kJ/mol; [28] for comparison, water's is 40.65 kJ/mol, methane 8.19 kJ/mol and phosphine 14.6 kJ/mol) and can be transported in pressurized or refrigerated vessels; however, at standard temperature and pressure liquid anhydrous ammonia will vaporize.
The reagents cause a unique reaction to occur based on the chemical it reacts with, allowing one to know what chemical is in the solution. An example is Heller's test where a test tube containing proteins has strong acids added to it. A cloudy ring forms where the substances meet, indicating the acids are denaturing the proteins. The cloud is a ...
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
The experiment used methane (CH 4), ammonia (NH 3), hydrogen (H 2), in ratio 2:2:1, and water (H 2 O). Applying an electric arc (simulating lightning) resulted in the production of amino acids. It is regarded as a groundbreaking experiment, and the classic experiment investigating the origin of life (abiogenesis).
The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO 2 H + R′OH ⇌ RCO 2 R′ + H 2 O. Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.