Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the poly-Weibull distribution is a continuous probability distribution. The distribution is defined to be that of a random variable defined to be the smallest of a number of statistically independent random variables having non-identical Weibull distributions .
value sets an initial failure-free time before the regular Weibull process begins. When θ = 0 {\displaystyle \theta =0} , this reduces to the 2-parameter distribution. The Weibull distribution can be characterized as the distribution of a random variable W {\displaystyle W} such that the random variable
The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function: [3] = + ()valid for , where | | < is the entropic index associated with the Kaniadakis entropy, > is the scale parameter, and > is the shape parameter or Weibull modulus.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions (+ +). The q -Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the κ {\displaystyle ...
The Discrete Weibull Distribution, first introduced by Toshio Nakagawa and Shunji Osaki, is a discrete analog of the continuous Weibull distribution, predominantly used in reliability engineering. It is particularly applicable for modeling failure data measured in discrete units like cycles or shocks.
They showed that the exponentiated Weibull distribution has increasing, decreasing, bathtub, and unimodal hazard rates. The exponentiated exponential distribution proposed by Gupta and Kundu (1999, 2001) is a special case of the exponentiated Weibull family.
When the larger values tend to be farther away from the mean than the smaller values, one has a skew distribution to the right (i.e. there is positive skewness), one may for example select the log-normal distribution (i.e. the log values of the data are normally distributed), the log-logistic distribution (i.e. the log values of the data follow ...