Search results
Results from the WOW.Com Content Network
The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplicands. This is held as a temporary result.
The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.
Some chips implement long multiplication, in hardware or in microcode, for various integer and floating-point word sizes. In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying
The first American-made pocket-sized calculator, the Bowmar 901B (popularly termed The Bowmar Brain), measuring 5.2 by 3.0 by 1.5 inches (132 mm × 76 mm × 38 mm), came out in the Autumn of 1971, with four functions and an eight-digit red LED display, for US$240, while in August 1972 the four-function Sinclair Executive became the first ...
With Num Lock on, digit keys produce the corresponding digit. On Apple Macintosh computers, which lack a Num Lock key, the numeric keypad always produces only numbers; the Num Lock key is replaced by the Clear key. The arrangement of digits on numeric keypads with the 7-8-9 keys two rows above the 1-2-3 keys is derived from calculators and cash ...
hover-edit-section [5] – The "D" keyboard shortcut now edits the section you're hovering over. page-info-kbd-shortcut [6] – The "I" keyboard shortcut now opens the "Page information" link in your sidebar. superjump [7] – Custom keyboard shortcuts to go to any page. accessKeysCheatSheet [8] - The "?" keyboard shortcut now overlays a list ...
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.
As an example, consider the multiplication of 58 with 213. After writing the multiplicands on the sides, consider each cell, beginning with the top left cell. In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for ...