Search results
Results from the WOW.Com Content Network
While it is sometimes possible to substitute gradient descent for a local search algorithm, gradient descent is not in the same family: although it is an iterative method for local optimization, it relies on an objective function’s gradient rather than an explicit exploration of a solution space.
Learning rate; Least squares; Least-squares spectral analysis; Lemke's algorithm; Level-set method; Levenberg–Marquardt algorithm; Lexicographic max-min optimization; Lexicographic optimization; Limited-memory BFGS; Line search; Linear-fractional programming; Lloyd's algorithm; Local convergence; Local search (optimization) Luus–Jaakola
AdaGrad (for adaptive gradient algorithm) is a modified stochastic gradient descent algorithm with per-parameter learning rate, first published in 2011. [38] Informally, this increases the learning rate for sparser parameters [clarification needed] and decreases the learning rate for ones that are less sparse. This strategy often improves ...
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large. The predecessor to PPO, Trust Region Policy Optimization (TRPO), was published in 2015.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Boosting algorithms can be based on convex or non-convex optimization algorithms. Convex algorithms, such as AdaBoost and LogitBoost, can be "defeated" by random noise such that they can't learn basic and learnable combinations of weak hypotheses. [19] [20] This limitation was pointed out by Long & Servedio in 2008.
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.