Search results
Results from the WOW.Com Content Network
An interface to the Python language is available through the PyArmadillo package, [4] which facilitates prototyping of algorithms in Python followed by relatively straightforward conversion to C++. Armadillo is a core dependency of the mlpack machine learning library [ 5 ] and the ensmallen C++ library for numerical optimization.
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
An unpublished computational program written in Pascal called Abra inspired this open-source software. Abra was originally designed for physicists to compute problems present in quantum mechanics. Kespers Peeters then decided to write a similar program in C computing language rather than Pascal, which he renamed Cadabra. However, Cadabra has ...
In particular, if either or in the complex domain can be computed with some complexity, then that complexity is attainable for all other elementary functions. Below, the size n {\displaystyle n} refers to the number of digits of precision at which the function is to be evaluated.
The JScience library has a Complex number class. The JAS library allows the use of complex numbers. Netlib has a complex number class for Java. javafastcomplex also adds complex number support for Java; jcomplexnumber is a project on implementation of complex number in Java. JLinAlg includes complex numbers with arbitrary precision.
When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...
dc (desk calculator) is a cross-platform reverse-Polish calculator which supports arbitrary-precision arithmetic. [1] It was written by Lorinda Cherry and Robert Morris at Bell Labs. [2] It is one of the oldest Unix utilities, preceding even the invention of the C programming language. Like other utilities of that vintage, it has a powerful set ...