enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Menger curvature - Wikipedia

    en.wikipedia.org/wiki/Menger_curvature

    Let x, y and z be three points in R n; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line.Let Π ⊆ R n be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z).

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h. The accuracy is governed by the second (2h step) term.

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B, = and =. The above observation implies that for the two regions considered, though the equation for bending moment and hence for the curvature are different, the constants of integration got during successive integration of the equation for ...

  5. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...

  6. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.

  7. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    Consider for instance the open unit disc, a non-compact Riemann surface without boundary, with curvature 0 and with Euler characteristic 1: the Gauss–Bonnet formula does not work. It holds true however for the compact closed unit disc, which also has Euler characteristic 1, because of the added boundary integral with value 2 π .

  8. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n.. For a general oriented k-submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian ~,, i.e. the set of all oriented k-planes in R n.

  9. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The only regular (of class C 2) closed surfaces in R 3 with constant positive Gaussian curvature are spheres. [2] If a sphere is deformed, it does not remain a sphere, proving that a sphere is rigid. A standard proof uses Hilbert's lemma that non-umbilical points of extreme principal curvature have non-positive Gaussian curvature. [3]