Search results
Results from the WOW.Com Content Network
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. [1] [2] Thus, in internal conversion (often abbreviated IC), a high-energy electron is emitted from the excited atom, but not from the ...
The one-electron universe postulate, proposed by theoretical physicist John Wheeler in a telephone call to Richard Feynman in the spring of 1940, is the hypothesis that all electrons and positrons are actually manifestations of a single entity moving backwards and forwards in time. According to Feynman:
Internal conversion is a transition from a higher to a lower electronic state in a molecule or atom. [1] It is sometimes called "radiationless de-excitation", because no photons are emitted. It differs from intersystem crossing in that, while both are radiationless methods of de-excitation, the molecular spin state for internal conversion ...
A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.
The internal conversion coefficient may be empirically determined by the following formula: = There is no valid formulation for an equivalent concept for E0 (electric monopole) nuclear transitions. There are theoretical calculations that can be used to derive internal conversion coefficients.
The theory showed that spontaneous emission depends upon the zero-point energy fluctuations of the electromagnetic field in order to get started. [56] [57] In a process in which a photon is annihilated (absorbed), the photon can be thought of as making a transition into the vacuum state. Similarly, when a photon is created (emitted), it is ...
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles.
Thus, according to the theory, even the vacuum has a vastly complex structure and all calculations of quantum field theory must be made in relation to this model of the vacuum. The theory considers vacuum to implicitly have the same properties as a particle, such as spin or polarization in the case of light, energy, and so on. According to the ...