Search results
Results from the WOW.Com Content Network
In electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an ...
Equivalent circuit for a single phase transformer with N P turns in the primary winding and N S in the secondary, showing: Primary winding resistance R P; Primary leakage reactance X P; Secondary winding resistance R S, referred to the primary circuit by the turns ratio squared
Referring to the diagram, a practical transformer's physical behavior may be represented by an equivalent circuit model, which can incorporate an ideal transformer. [16] Winding joule losses and leakage reactance are represented by the following series loop impedances of the model: Primary winding: R P, X P; Secondary winding: R S, X S.
Darlington gives an equivalent transform that can eliminate an ideal transformer altogether. This technique requires that the transformer is next to (or capable of being moved next to) an "L" network of same-kind impedances. The transform in all variants results in the "L" network facing the opposite way, that is, topologically mirrored. [2]
In circuit design, the Y-Δ transform, also written wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like the letter Y and the Greek capital letter Δ.
The circle diagram can be drawn for alternators, synchronous motors, transformers, induction motors. The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.
Phasor diagram of Ferranti effect in Cable. In electrical engineering, the Ferranti effect is the increase in voltage occurring at the receiving end of a very long (> 200 km) AC electric power transmission line, relative to the voltage at the sending end, when the load is very small, or no load is connected. It can be stated as a factor, or as ...
For instance the [z] parameter model leads to dependent voltage generators as shown in this diagram; [z] parameter equivalent circuit showing dependent voltage generators. There will always be dependent generators in a two-port parameter equivalent circuit. This applies to the [h] parameters as well as to the [z] and any other kind.