Search results
Results from the WOW.Com Content Network
Examples of variance-stabilizing transformations are the Fisher transformation for the sample correlation coefficient, the square root transformation or Anscombe transform for Poisson data (count data), the Box–Cox transformation for regression analysis, and the arcsine square root transformation or angular transformation for proportions ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
The principal square root of a real positive semidefinite matrix is real. [3] The principal square root of a positive definite matrix is positive definite; more generally, the rank of the principal square root of A is the same as the rank of A. [3] The operation of taking the principal square root is continuous on this set of matrices. [4]
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
Let = + + +be a polynomial, and , …, be its complex roots (not necessarily distinct). For any constant c, the polynomial whose roots are +, …, + is = = + + +.If the coefficients of P are integers and the constant = is a rational number, the coefficients of Q may be not integers, but the polynomial c n Q has integer coefficients and has the same roots as Q.