Search results
Results from the WOW.Com Content Network
The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph. The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source ...
Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...
The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [2] The speed-up is achieved by creating shortcuts in a ...
The maximum shortest path weight for the source node is defined as ():= { (,): (,) <}, abbreviated . [1] Also, the size of a path is defined to be the number of edges on the path. We distinguish light edges from heavy edges, where light edges have weight at most Δ {\displaystyle \Delta } and heavy edges have weight bigger than Δ ...
The K (>2) versions are similarly obtained, e.g., the vertices of the shortest edge disjoint pair of paths (except for the source and destination vertices) are split, with the vertices in each split pair connected to each other with arcs of zero weight as well as the external edges in a similar manner [8][9]. The algorithms presented for ...
In graph theory, Yen's algorithm computes single-source K-shortest loopless paths for a graph with non-negative edge cost. [1] The algorithm was published by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path, then proceeds to find K − 1 deviations of the best path.
The general graph Steiner tree problem can be approximated by computing the minimum spanning tree of the subgraph of the metric closure of the graph induced by the terminal vertices, as first published in 1981 by Kou et al. [18] The metric closure of a graph G is the complete graph in which each edge is weighted by the shortest path distance ...
The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.