Search results
Results from the WOW.Com Content Network
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows from one section of a pipe to a smaller section. The Venturi effect is named after its discoverer, the Italian physicist Giovanni Battista Venturi , and first published in 1797.
For a horizontal device, the continuity equation shows that for an incompressible fluid, the reduction in diameter will cause an increase in the fluid flow speed. Subsequently, Bernoulli's principle then shows that there must be a decrease in the pressure in the reduced diameter region. This phenomenon is known as the Venturi effect.
Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe ) into a lower pressure environment the fluid velocity increases.
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle p = 7.0 MPa and exit the rocket exhaust at an absolute pressure p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor γ = 1.22 and a molar mass M = 22 kg/kmol.
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
A vacuum ejector, or simply ejector, or aspirator, is a type of vacuum pump, which produces vacuum by means of the Venturi effect.. In an ejector, a working fluid (liquid or gaseous) flows through a jet nozzle into a tube that first narrows and then expands in cross-sectional area.
In hydrology, a Venturi flume is a device used for measuring the rate of flow of a liquid in situations with large flow rates, such as a river. [1] It is based on the Venturi effect, for which it is named. [2] It was first developed by V.M. Cone in Fort Collins, Colorado. [3] The Venturi flume consists of a flume with a constricted section in ...
A backwater buildup effect occurs in a submerged flume. For a flow calculation, a depth measurement both upstream and downstream is needed. Although commonly thought of as occurring at higher flow rates, submerged flow can exist at any flow level as it is a function of downstream conditions.