Search results
Results from the WOW.Com Content Network
In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.
Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]
Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form + makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013). The proof is given below:
Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld. Selected prime related sequences in OEIS.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
Any prime number is prime to any number it does not measure. [note 7] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 8] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.
(The list of known primes of this form is A002496.) The existence of infinitely many such primes would follow as a consequence of other number-theoretic conjectures such as the Bunyakovsky conjecture and Bateman–Horn conjecture. As of 2024, this problem is open. One example of near-square primes are Fermat primes.
Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4. This property implies that no Euclid number can be a square.