Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution.
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...
The variance of the mean, 1/N (the square of the standard error) is equal to the reciprocal of the Fisher information from the sample and thus, by the Cramér–Rao inequality, the sample mean is efficient in the sense that its efficiency is unity (100%). Now consider the sample median, ~.
where n is the sample size, N is the population size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. A computationally simpler but slightly less accurate version of this estimator is
In many cases, especially for smaller samples, the sample range is likely to be affected by the size of sample which would hamper comparisons. Another possible method to make the RMSD a more useful comparison measure is to divide the RMSD by the interquartile range (IQR). When dividing the RMSD with the IQR the normalized value gets less ...
The reason that an uncorrected sample variance, S 2, is biased stems from the fact that the sample mean is an ordinary least squares (OLS) estimator for μ: ¯ is the number that makes the sum = (¯) as small as possible. That is, when any other number is plugged into this sum, the sum can only increase.
When the probability distribution has a finite and nonzero arithmetic mean AM, the relative mean absolute difference, sometimes denoted by Δ or RMD, is defined by =. The relative mean absolute difference quantifies the mean absolute difference in comparison to the size of the mean and is a dimensionless quantity.