enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  3. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(10 1000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(10 2000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N). [3]

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Prime ideals, which generalize prime elements in the sense that the principal ideal generated by a prime element is a prime ideal, are an important tool and object of study in commutative algebra, algebraic number theory and algebraic geometry.

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The Bunyakovsky conjecture generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as x 2 + 1 (known from Landau's fourth problem) attain infinitely many prime values is an important open problem. Dickson's conjecture generalizes Dirichlet's theorem to more than one polynomial.

  7. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left. This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient [ citation needed ] .

  8. Mason–Stothers theorem - Wikipedia

    en.wikipedia.org/wiki/Mason–Stothers_theorem

    A corollary of the Mason–Stothers theorem is the analog of Fermat's Last Theorem for function fields: if a(t) n + b(t) n = c(t) n for a, b, c relatively prime polynomials over a field of characteristic not dividing n and n > 2 then either at least one of a, b, or c is 0 or they are all constant.

  9. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).