enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. QuTiP - Wikipedia

    en.wikipedia.org/wiki/QuTiP

    QuTiP, short for the Quantum Toolbox in Python, is an open-source computational physics software library for simulating quantum systems, particularly open quantum systems. [1] [2] QuTiP allows simulation of Hamiltonians with arbitrary time-dependence, allowing simulation of situations of interest in quantum optics, ion trapping, superconducting circuits and quantum nanomechanical resonators.

  3. List of quantum chemistry and solid-state physics software

    en.wikipedia.org/wiki/List_of_quantum_chemistry...

    Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods. They may also include density functional theory (DFT), molecular mechanics or semi-empirical quantum chemistry methods.

  4. Qiskit - Wikipedia

    en.wikipedia.org/wiki/QISKit

    Qiskit is made of elements that work together to enable quantum computing. The central goal of Qiskit is to build a software stack that makes it easier for anyone to use quantum computers, regardless of their skill level or area of interest; Qiskit allows users to design experiments and applications and run them on real quantum computers and/or classical simulators.

  5. Deutsch–Jozsa algorithm - Wikipedia

    en.wikipedia.org/wiki/Deutsch–Jozsa_algorithm

    Below is a simple example of how the Deutsch–Jozsa algorithm can be implemented in Python using Qiskit, an open-source quantum computing software development framework by IBM. We will walk through each part of the code step by step to show how it translates the theory into a working quantum circuit.

  6. Quantum Trajectory Theory - Wikipedia

    en.wikipedia.org/wiki/Quantum_Trajectory_Theory

    Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. [1] It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. [2]

  7. Hamiltonian simulation - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_simulation

    Hamiltonian simulation is a problem that demands algorithms which implement the evolution of a quantum state efficiently. The Hamiltonian simulation problem was proposed by Richard Feynman in 1982, where he proposed a quantum computer as a possible solution since the simulation of general Hamiltonians seem to grow exponentially with respect to ...

  8. Exact diagonalization - Wikipedia

    en.wikipedia.org/wiki/Exact_diagonalization

    Exact diagonalization is only feasible for systems with a few tens of particles, due to the exponential growth of the Hilbert space dimension with the size of the quantum system. It is frequently employed to study lattice models, including the Hubbard model , Ising model , Heisenberg model , t - J model , and SYK model .

  9. Quantum programming - Wikipedia

    en.wikipedia.org/wiki/Quantum_programming

    Quantum lambda calculi are extensions of the classical lambda calculus introduced by Alonzo Church and Stephen Cole Kleene in the 1930s. The purpose of quantum lambda calculi is to extend quantum programming languages with a theory of higher-order functions. The first attempt to define a quantum lambda calculus was made by Philip Maymin in 1996 ...