Search results
Results from the WOW.Com Content Network
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.
For a single component system, the "standard" three parameters are the isothermal compressibility , the specific heat at constant pressure , and the coefficient of thermal expansion . For example, the following equations are true:
It reads: = + [()] where is the number density, g(r) is the radial distribution function and () is the isothermal compressibility. Using the Fourier representation of the Ornstein-Zernike equation the compressibility equation can be rewritten in the form:
The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):
The two first partial derivatives of the vdW equation are | = = | = + = where = is the isothermal compressibility (a measure of the relative increase of volume from an increase of pressure, at constant temperature), and = is the coefficient of thermal expansion (a measure of the relative increase of volume from an increase of temperature, at ...
is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .
Work and heat are not thermodynamic properties, but rather process quantities: flows of energy across a system boundary. Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat.
Since the isothermal compressibility is positive for nearly all phases, and the square of thermal expansion coefficient is always either a positive quantity or zero, the specific heat at constant pressure is nearly always greater than or equal to specific heat at constant volume: ,,.