enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Brent's method is a combination of the bisection method, the secant method and inverse quadratic interpolation. At every iteration, Brent's method decides which method out of these three is likely to do best, and proceeds by doing a step according to that method. This gives a robust and fast method, which therefore enjoys considerable popularity.

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    General classes of methods: Collocation method — discretizes a continuous equation by requiring it only to hold at certain points; Level-set method. Level set (data structures) — data structures for representing level sets; Sinc numerical methodsmethods based on the sinc function, sinc(x) = sin(x) / x; ABS methods

  6. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    The Davidon–Fletcher–Powell formula (or DFP; named after William C. Davidon, Roger Fletcher, and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current estimate and satisfies the curvature condition. It was the first quasi-Newton method to generalize the secant method to a

  7. Sidi's generalized secant method - Wikipedia

    en.wikipedia.org/wiki/Sidi's_generalized_secant...

    For k = 1 these two methods are identical: it is the secant method. For k = 2 this method is known as Muller's method. [3] For k = 3 this approach involves finding the roots of a cubic function, which is unattractively complicated. This problem becomes worse for even larger values of k.

  8. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/wiki/Inverse_quadratic...

    In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    multiderivative methods, which use not only the function f but also its derivatives. This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively.