Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
There are several interesting features associated with the diffusion distance, based on our previous discussion that also serves as a scale parameter: Points are closer at a given scale (as specified by D t ( x i , x j ) {\displaystyle D_{t}(x_{i},x_{j})} ) if they are highly connected in the graph, therefore emphasizing the concept of a cluster.
Solution of equation: 1. For solving the one- dimensional convection- diffusion problem we have to express equation (8) at all the grid nodes. 2. Now obtained set of algebraic equations is then solved to obtain the distribution of the transported property .
The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).
The unsteady convection–diffusion problem is considered, at first the known temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection diffusion equation an equation is obtained from the differentiation of this equation.
Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes. [25]