enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily ...

  3. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Autoregressive moving-average model. In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe of a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.

  4. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Autoregressive model. In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own ...

  5. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The default Expert Modeler feature evaluates a range of seasonal and non-seasonal autoregressive (p), integrated (d), and moving average (q) settings and seven exponential smoothing models. The Expert Modeler can also transform the target time-series data into its square root or natural log. The user also has the option to restrict the Expert ...

  6. Granger causality - Wikipedia

    en.wikipedia.org/wiki/Granger_causality

    Granger causality. When time series X Granger-causes time series Y, the patterns in X are approximately repeated in Y after some time lag (two examples are indicated with arrows). Thus, past values of X can be used for the prediction of future values of Y. The Granger causality test is a statistical hypothesis test for determining whether one ...

  7. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series.

  8. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    Moving-average model. In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1][2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  9. Hodrick–Prescott filter - Wikipedia

    en.wikipedia.org/wiki/Hodrick–Prescott_filter

    Hodrick–Prescott filter. The Hodrick–Prescott filter (also known as Hodrick–Prescott decomposition) is a mathematical tool used in macroeconomics, especially in real business cycle theory, to remove the cyclical component of a time series from raw data. It is used to obtain a smoothed-curve representation of a time series, one that is ...