Search results
Results from the WOW.Com Content Network
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.
Hendrik Antoon Lorentz (1853–1928), after whom the Lorentz group is named.. In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena.
A derivation for the transformation of the Lorentz force for the particular case u = 0 is given here. [4] A more general one can be seen here. [5] The transformations in this form can be made more compact by introducing the electromagnetic tensor (defined below), which is a covariant tensor.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
The transformations of field operators illustrate the complementary role played by the finite-dimensional representations of the Lorentz group and the infinite-dimensional unitary representations of the Poincare group, witnessing the deep unity between mathematics and physics. [19]
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
In the special relativity, Lorentz transformations exhibit the symmetry of Minkowski spacetime by using a constant c as the speed of light, and a parameter v as the relative velocity between two inertial reference frames. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form: