Search results
Results from the WOW.Com Content Network
The digestion products consisting of a mixture of tri-, di- and monoglycerides and free fatty acids, which, together with the other fat soluble contents of the diet (e.g. the fat soluble vitamins and cholesterol) and bile salts form mixed micelles, in the watery duodenal contents (see diagrams on the right). [27] [29]
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. [5] Vertebrates (including humans) use both sources of fat to produce energy for organs such as the heart to function. [6]
The breakdown of this fat is known as lipolysis. The products of lipolysis, free fatty acids , are released into the bloodstream and circulate throughout the body. During the breakdown of triacylglycerols into fatty acids, more than 75% of the fatty acids are converted back into triacylglycerol, a natural mechanism to conserve energy, even in ...
Because the level of circulatory glucose is largely determined by the intake of dietary carbohydrates, diet controls major aspects of metabolism via insulin. [18] In humans, insulin is made by beta cells in the pancreas, fat is stored in adipose tissue cells, and glycogen is both stored and released as needed by liver cells. Regardless of ...
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.
Chylomicron structure ApoA, ApoB, ApoC, ApoE (apolipoproteins); T (triacylglycerol); C (cholesterol); green (phospholipids). Chylomicrons transport lipids absorbed from the intestine to adipose, cardiac, and skeletal muscle tissue, where their triglyceride components are hydrolyzed by the activity of the lipoprotein lipase, allowing the released free fatty acids to be absorbed by the tissues.
After a meal, when the blood concentration of fatty acids rises, there is an increase in uptake of fatty acids in different cells of the body, mainly liver cells, adipocytes and muscle cells. This uptake is stimulated by insulin from the pancreas. As a result, the blood concentration of fatty acid stabilizes again after a meal.