Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
Most humans can function at rest with an oxygen level of 15% at one atmosphere pressure; [1] a fuel such as methane is combustable down to 12% oxygen in nitrogen. A small room of 10 meter 3 has 2.08 meter 3 (2080 liters) or 2.99 kg of oxygen which would occupy 2.62 liters if it was liquid. [2]
In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature.
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass. Other conceptually comparable quantities or ratios include specific density , relative density (specific gravity) , and specific weight .
[19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O 2 surrounding those planets is produced solely by the action of ultraviolet radiation on oxygen-containing molecules such as carbon dioxide.
Electric and magnetic fields can store energy and its density relates to the strength of the fields within a given volume. This (volumetric) energy density is given by u = ε 2 E 2 + 1 2 μ B 2 {\displaystyle u={\frac {\varepsilon }{2}}\mathbf {E} ^{2}+{\frac {1}{2\mu }}\mathbf {B} ^{2}} where E is the electric field , B is the magnetic field ...
The third column in the table lists energy density, the energy content per liter of volume, which is useful for understanding the space needed for storing the fuel. The final two columns deal with the carbon footprint of the fuel.