enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conway criterion - Wikipedia

    en.wikipedia.org/wiki/Conway_criterion

    The Conway criterion applies to any shape that is a closed disk—if the boundary of such a shape satisfies the criterion, then it will tile the plane. Although the graphic artist M.C. Escher never articulated the criterion, he discovered it in the mid 1920s. One of his earliest tessellations, later numbered 1 by him, illustrates his ...

  3. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    Special cases are right triangles (p q 2). Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror.

  4. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of uniform polyhedral cells, and having all vertices the same (i.e., the group of [isometries of 3-space that preserve the tiling] is transitive on vertices). There are 28 convex examples in Euclidean 3-space, [1] also called the Archimedean honeycombs.

  5. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  6. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The fundamental region is a shape such as a rectangle that is repeated to form the tessellation. [22] For example, a regular tessellation of the plane with squares has a meeting of four squares at every vertex. [18] The sides of the polygons are not necessarily identical to the edges of the tiles.

  7. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    Subdivision of convex hexagons is also possible with three (type 3), four (type 4) and nine (type 3) pentagons. By extension of this relation, a plane can be tessellated by a single pentagonal prototile shape in ways that generate hexagonal overlays.

  8. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 3 6 ; 3 6 (both of different transitivity class), or (3 6 ) 2 , tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided ...

  9. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.