Search results
Results from the WOW.Com Content Network
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]
The recursive nature of some patterns is obvious in certain examples—a branch from a tree or a frond from a fern is a miniature replica of the whole: not identical, but similar in nature. Similarly, random fractals have been used to describe/create many highly irregular real-world objects, such as coastlines and mountains.
In cartography, a triangulated irregular network is a point set triangulation of a set of two-dimensional points together with elevations for each point. Lifting each point from the plane to its elevated height lifts the triangles of the triangulation into three-dimensional surfaces, which form an approximation of a three-dimensional landform.
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure : not itself an element of a polytope, but a diagram showing how the elements meet.
Tessellations have given rise to many types of tiling puzzle, from traditional jigsaw puzzles (with irregular pieces of wood or cardboard) [91] and the tangram, [92] to more modern puzzles that often have a mathematical basis. For example, polyiamonds and polyominoes are figures of regular triangles and squares, often used in tiling puzzles.
In mathematics, the irregularity of a complex surface X is the Hodge number, = (), usually denoted by q. [1] The irregularity of an algebraic surface is sometimes defined to be this Hodge number, and sometimes defined to be the dimension of the Picard variety, which is the same in characteristic 0 but can be smaller in positive characteristic.
The Reuleaux triangle can be constructed from an equilateral triangle by connecting each pair of adjacent vertices with a circular arc centered on the opposing vertex, and Reuleaux polygons can be formed by a similar construction from any regular polygon with an odd number of sides as well as certain irregular polygons. Every curve of constant ...
Informally, a pure 1-complex "looks" like it's made of a bunch of lines, a 2-complex "looks" like it's made of a bunch of triangles, etc. An example of a non-homogeneous complex is a triangle with a line segment attached to one of its vertices. Pure simplicial complexes can be thought of as triangulations and provide a definition of polytopes.