Search results
Results from the WOW.Com Content Network
Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...
Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not. In practice with most big number libraries such as GMP, the Fermat test is not noticeably faster than a Miller–Rabin test, and can be slower for many inputs. [4] As an exception, OpenPFGW uses only the Fermat test for probable prime testing.
In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
This occurs for example when n is a probable prime to base a but not a strong probable prime to base a. [20]: 1402 If x is a nontrivial square root of 1 modulo n, since x 2 ≡ 1 (mod n), we know that n divides x 2 − 1 = (x − 1)(x + 1); since x ≢ ±1 (mod n), we know that n does not divide x − 1 nor x + 1.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. [1] [2] For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 7 2 and 15750 = 2 × 3 2 × 5 3 × 7 are both 7-smooth, while 11 and 702 = 2 × 3 3 × 13 are not 7-smooth.
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.