enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.

  4. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.

  5. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    Check if n is a perfect power: if n = a b for integers a > 1 and b > 1, then output composite. Find the smallest r such that ord r (n) > (log 2 n) 2. If r and n are not coprime, then output composite. For all 2 ≤ a ≤ min (r, n−1), check that a does not divide n: If a|n for some 2 ≤ a ≤ min (r, n−1), then output composite.

  6. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    This occurs for example when n is a probable prime to base a but not a strong probable prime to base a. [20]: 1402 If x is a nontrivial square root of 1 modulo n, since x 2 ≡ 1 (mod n), we know that n divides x 2 − 1 = (x − 1)(x + 1); since x ≢ ±1 (mod n), we know that n does not divide x − 1 nor x + 1.

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    If a and p are coprime numbers such that a p−1 − 1 is divisible by p, then p need not be prime. If it is not, then p is called a (Fermat) pseudoprime to base a. The first pseudoprime to base 2 was found in 1820 by Pierre Frédéric Sarrus: 341 = 11 × 31. [12] [13] A number p that is a Fermat pseudoprime to base a for every number a coprime ...

  8. Lucas–Lehmer primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer_primality_test

    The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ((4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime

  9. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.