enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Euler's proof of the zeta product formula contains a version of the sieve of Eratosthenes in which each composite number is eliminated exactly once. [9] The same sieve was rediscovered and observed to take linear time by Gries & Misra (1978). [19] It, too, starts with a list of numbers from 2 to n in order. On each step the first element is ...

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit X. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the ...

  5. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. Formulas for calculating primes do exist; however, they are computationally very slow.

  6. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.

  7. Goldston–Pintz–Yıldırım sieve - Wikipedia

    en.wikipedia.org/wiki/Goldston–Pintz...

    The Goldston–Pintz–Yıldırım sieve (also called GPY sieve or GPY method) is a sieve method and variant of the Selberg sieve with generalized, multidimensional sieve weights. The sieve led to a series of important breakthroughs in analytic number theory. It is named after the mathematicians Dan Goldston, János Pintz and Cem Yıldırım. [1]

  8. Meissel–Lehmer algorithm - Wikipedia

    en.wikipedia.org/wiki/Meissel–Lehmer_algorithm

    Meissel already found that for k ≥ 3, P k (x, a) = 0 if a = π(x 1/3).He used the resulting equation for calculations of π(x) for big values of x. [1]Meissel calculated π(x) for values of x up to 10 9, but he narrowly missed the correct result for the biggest value of x.

  9. Sieve method - Wikipedia

    en.wikipedia.org/wiki/Sieve_method

    Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle