enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle—that is, a rectangle with an aspect ratio of ⁠ ⁠ —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets , in some cases based on dubious fits to data. [ 8 ]

  4. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...

  5. List of works designed with the golden ratio - Wikipedia

    en.wikipedia.org/wiki/List_of_works_designed...

    The Sacrament of the Last Supper (1955): The canvas of this surrealist masterpiece by Salvador Dalí is a golden rectangle. A huge dodecahedron, with edges in golden ratio to one another, is suspended above and behind Jesus and dominates the composition. [11] [40]

  6. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    For example, a golden spiral can be approximated by first starting with a rectangle for which the ratio between its length and width is the golden ratio. This rectangle can then be partitioned into a square and a similar rectangle and this rectangle can then be split in the same way. After continuing this process for an arbitrary number of ...

  7. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    Several properties and common features of the Penrose tilings involve the golden ratio = + (approximately 1.618). [31] [32] This is the ratio of chord lengths to side lengths in a regular pentagon, and satisfies φ = 1 + 1/ φ.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. File:Construction of Golden rectangle.svg - Wikipedia

    en.wikipedia.org/wiki/File:Construction_of...

    Construction of a golden rectangle Construct a simple square; Draw a line from the midpoint of one side of the square to an opposite corner; Use that line as the radius to draw an arc that defines the height of the rectangle; Use the endpoints of the arc to complete the rectangle; The proportions of the resulting rectangle is φ or