Search results
Results from the WOW.Com Content Network
Note the format of the parameter notation SXYab, where "S" stands for scattering parameter or S-parameter, "X" is the response mode (differential or common), "Y" is the stimulus mode (differential or common), "a" is the response (output) port and b is the stimulus (input) port. This is the typical nomenclature for scattering parameters.
The method uses scattering parameters of a material sample embedded in a waveguide, namely and , to calculate permittivity and permeability data. and correspond to the cumulative reflection and transmission coefficient of the sample that are referenced to the each sample end, respectively: these parameters account for the multiple internal reflections inside the sample, which is considered to ...
RF microwave CAE CAD is computer-aided design (CAD) using computer technology to aid in the design, modeling, and simulation of an RF (Radio Frequency) or microwave product. [ 1 ] [ 2 ] It is a visual and symbol-based method of communication whose conventions are particular to RF/microwave engineering.
Here is one of the scattering parameters. Insertion loss is the extra loss produced by the introduction of the DUT between the 2 reference planes of the measurement. The extra loss can be introduced by intrinsic loss in the DUT and/or mismatch. In case of extra loss the insertion loss is defined to be positive.
The ideal OMT splits the two polarizations at the dual-polarized port into two standard single-polarized ports and such arrangement allows the direct measurement of all the scattering parameters of the DUT (either by using a 4-port vector network analyzer (VNA) or a 2-port one with 2 single-polarized loads used in several combinations).
For mobility modeling at the physical level the electrical variables are the various scattering mechanisms, carrier densities, and local potentials and fields, including their technology and ambient dependencies. By contrast, at the circuit-level, models parameterize the effects in terms of terminal voltages and empirical scattering parameters.
Microwave imaging is a science which has been evolved from older detecting/locating techniques (e.g., radar) in order to evaluate hidden or embedded objects in a structure (or media) using electromagnetic (EM) waves in microwave regime (i.e., ~300 MHz-300 GHz). [1]
X-parameters help solve this cascading problem: if the X-parameters of a set of components are measured individually, the X-parameters (and hence the non-linear transfer function) can be calculated of any cascade made from them. Calculations based on X-parameters are usually performed within a harmonic balance simulator environment. [3]