Search results
Results from the WOW.Com Content Network
Light rays enter a raindrop from one direction (typically a straight line from the Sun), reflect off the back of the raindrop, and fan out as they leave the raindrop. The light leaving the raindrop is spread over a wide angle, with a maximum intensity at 40.89–42°.
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.
The whole system composed by the Sun's rays, the observer's head, and the (spherical) water drops has an axial symmetry around the axis through the observer's head and parallel to the Sun's rays. The rainbow is curved because the set of all the raindrops that have the right angle between the observer, the drop, and the Sun, lie on a cone ...
Caustics produced by a glass of water, visible as patches of light Cardioid caustic at the bottom of a teacup Caustics made by the surface of water Caustics in shallow water In optics , a caustic or caustic network [ 1 ] is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that ...
Diffraction of light through the eyelashes; Haidinger's brush; Monocular diplopia (or polyplopia) from reflections at boundaries between the various ocular media; Phosphenes from stimulation other than by light (e.g., mechanical, electrical) of the rod cells and cones of the eye or of other neurons of the visual system; Purkinje images.
The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases. Rayleigh scattering of sunlight in Earth's atmosphere causes diffuse sky radiation , which is the reason for the blue color of the daytime and twilight sky , as well as the yellowish ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Rays hitting the particle undergoes reflection, refraction and diffraction. These rays exit in various directions with different amplitudes and phases. Such ray tracing techniques are used to describe optical phenomena such as rainbow of halo on hexagonal ice crystals for large particles.