Search results
Results from the WOW.Com Content Network
Michelson (1918) criticized the Twyman–Green configuration as being unsuitable for the testing of large optical components, since the available light sources had limited coherence length. Michelson pointed out that constraints on geometry forced by the limited coherence length required the use of a reference mirror of equal size to the test ...
In transmissive applications, such as with a Mach–Zehnder interferometer, the light traverses the displacement only once, and the coherence length is effectively doubled. The coherence length can also be measured using a Michelson interferometer and is the optical path length difference of a self-interfering laser beam which corresponds to ...
Michelson (1918) criticized the Twyman–Green configuration as being unsuitable for the testing of large optical components, since the light sources available at the time had limited coherence length. Michelson pointed out that constraints on geometry forced by limited coherence length required the use of a reference mirror of equal size to ...
In optics, temporal coherence is measured in an interferometer such as the Michelson interferometer or Mach–Zehnder interferometer. In these devices, a wave is combined with a copy of itself that is delayed by time . A detector measures the time-averaged intensity of the light exiting the interferometer.
In optical interferometers such as the Michelson interferometer, Mach–Zehnder interferometer, ... is the coherence length of the light beam.
This corresponds to the coherence length because the difference of the optical path length is twice the length difference of the reference and measurement arms of the interferometer. The relationship between correlogram width, coherence length and spectral width is calculated for the case of a Gaussian spectrum.
The first implementation of a/LCI [6] used a Michelson interferometer, the same model used in the famous Michelson–Morley experiment. The Michelson interferometer splits one beam of light into two paths, one reference path and one sampling path, and recombines them again to produce a waveform resulting from interference. The difference ...
Linnik interferometer (microscopy) LUPI variant of Michelson; Lummer–Gehrcke interferometer; Mach–Zehnder interferometer; Martin–Puplett interferometer; Michelson interferometer; Mirau interferometer (also known as a Mirau objective) (microscopy) Moiré interferometer (see moiré pattern) Multi-beam interferometer ; Near-field interferometer