Search results
Results from the WOW.Com Content Network
There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.
In geometry, a pentahedron (pl.: pentahedra) is a polyhedron with five faces or sides. There are no face-transitive polyhedra with five sides and there are two distinct topological types. With regular polygon faces, the two topological forms are the square pyramid and triangular prism.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
The names of tetrahedra, hexahedra, octahedra (8-sided polyhedra), dodecahedra (12-sided polyhedra), and icosahedra (20-sided polyhedra) are sometimes used without additional qualification to refer to the Platonic solids, and sometimes used to refer more generally to polyhedra with the given number of sides without any assumption of symmetry. [30]
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. ... polyhedra and polytopes gives the names of various classes of ...
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
The edges are fully truncated into single points. The polyhedron now has the combined faces of the parent and dual. Polyhedra are named by the number of sides of the two regular forms: {p,q} and {q,p}, like cuboctahedron for r{4,3} between a cube and octahedron. Birectified (2r) (also dual) 2r{p,q} t 2 {p,q}
The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices. Named polyhedra primarily come from the families of platonic solids, Archimedean solids, Catalan solids, and Johnson solids, as well as dihedral symmetry families including the pyramids, bipyramids, prisms, antiprisms, and trapezohedrons.