Search results
Results from the WOW.Com Content Network
Liquid nitrogen is a compact and readily transported source of dry nitrogen gas, as it does not require pressurization. Further, its ability to maintain temperatures far below the freezing point of water, specific heat of 1040 J ⋅kg -1 ⋅K -1 and heat of vaporization of 200 kJ⋅kg -1 makes it extremely useful in a wide range of applications ...
The table of specific heat capacities gives the volumetric heat capacity as well as the specific heat capacity of ... liquid: 1.56: 2.62: Nitrogen: ... one based on ...
1 Specific heat capacity. 2 Notes. ... 7 N nitrogen (N 2, gas) use: 29.124: 1.040 ... Properties of the Elements and Inorganic Compounds; Heat Capacity of the ...
It was originally defined so that the specific heat capacity of liquid water would be 1 cal/(°C⋅g). The grand calorie (kilocalorie, kilogram-calorie, food calorie, kcal, Cal) is 1000 small calories, 4184 J exactly. It was defined so that the specific heat capacity of water would be 1 Cal/(°C⋅kg).
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
In those contexts, the unit of heat capacity is 1 BTU/°R ≈ 1900 J/K. [5] The BTU was in fact defined so that the average heat capacity of one pound of water would be 1 BTU/°F. In this regard, with respect to mass, note conversion of 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅K [ 6 ] and the calorie (below).
Because the liquid-to-gas expansion ratio of nitrogen is 1:694 at 20 °C, a tremendous amount of force can be generated if liquid nitrogen is rapidly vaporised in an enclosed space. In an incident on January 12, 2006, at Texas A&M University , the pressure-relief devices of a tank of liquid nitrogen were malfunctioning and later sealed.
Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...