enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Predictive modeling in trading is a modeling process wherein the probability of an outcome is predicted using a set of predictor variables. Predictive models can be built for different assets like stocks, futures, currencies, commodities etc. [ citation needed ] Predictive modeling is still extensively used by trading firms to devise strategies ...

  3. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive model solutions can be considered a type of data mining technology. The models can analyze both historical and current data and generate a model in order to predict potential future outcomes. [14] Regardless of the methodology used, in general, the process of creating predictive models involves the same steps.

  4. Model predictive control - Wikipedia

    en.wikipedia.org/wiki/Model_predictive_control

    Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification. The main advantage of MPC is the fact that it allows the current timeslot to be optimized, while keeping future timeslots in account.

  5. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    Forecasting is the process of making predictions based on past and present data. Later these can be compared with what actually happens. Later these can be compared with what actually happens. For example, a company might estimate their revenue in the next year, then compare it against the actual results creating a variance actual analysis.

  6. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  7. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    The first version of the methodology was presented at the 4th CRISP-DM SIG Workshop in Brussels in March 1999, [5] and published as a step-by-step data mining guide later that year. [6] Between 2006 and 2008, a CRISP-DM 2.0 SIG was formed, and there were discussions about updating the CRISP-DM process model. [7]

  8. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  9. SEMMA - Wikipedia

    en.wikipedia.org/wiki/SEMMA

    SEMMA is an acronym that stands for Sample, Explore, Modify, Model, and Assess. It is a list of sequential steps developed by SAS Institute, one of the largest producers of statistics and business intelligence software. It guides the implementation of data mining applications. [1]