Search results
Results from the WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
3695 K, melting point of tungsten; 3915 K, sublimation point of carbon; 4231 K, melting point of hafnium carbide; 4800 K, 10 MPa, triple point of carbon [3] 5000 K, 12 GPa melting point of diamond [4] 5100 K in cyanogen–dioxygen flame; 5516 K at dicyanoacetylene (carbon subnitride)–ozone flame; 5650 K at Earth's Inner Core Boundary; 5780 K ...
Above the graphite–diamond–liquid carbon triple point, the melting point of diamond increases slowly with increasing pressure; but at pressures of hundreds of GPa, it decreases. [12] At high pressures, silicon and germanium have a BC8 body-centered cubic crystal structure, and a similar structure is predicted for carbon at high pressures.
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Fahrenheit (°F) Celsius (°C) Réaumur (°Ré) Rømer (°Rø) Newton (°N) Delisle (°D) Absolute zero: Lowest recorded surface temperature on Earth [1] Fahrenheit's ice/water/salt mixture: Melting point of ice (at standard pressure) Average surface temperature on Earth (15 °C) Average human body temperature (37 °C)
The precise tensile strength of bulk diamond is little known; however, compressive strength up to 60 GPa has been observed, and it could be as high as 90–100 GPa in the form of micro/nanometer-sized wires or needles (~ 100–300 nm in diameter, micrometers long), with a corresponding maximum tensile elastic strain in excess of 9%.
Print/export Download as PDF; ... (diamond) use: 3.513 g/cm 3: LNG ... The suggested values for liquid densities refer to "at the melting point (m.p.)" by default.
For example, the melting point of silicon at ambient pressure (0.1 MPa) is 1415 °C, but at pressures in excess of 10 GPa it decreases to 1000 °C. [13] Melting points are often used to characterize organic and inorganic compounds and to ascertain their purity. The melting point of a pure substance is always higher and has a smaller range than ...