Search results
Results from the WOW.Com Content Network
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game, [2] [3] meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial ...
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. [2] Cellular automata have found application in various ...
It includes a hashlife algorithm that can simulate the behavior of very large structured or repetitive patterns such as Paul Rendell's Life universal Turing machine, [4] and that is fast enough to simulate some patterns for 2 32 or more time units. [5] It also includes a large library of predefined patterns in Conway's Game of Life and other ...
The evolution of the replicator. Highlife is a cellular automaton similar to Conway's Game of Life.It was devised in 1994 by Nathan Thompson. It is a two-dimensional, two-state cellular automaton in the "Life family" and is described by the rule B36/S23; that is, a cell is born if it has 3 or 6 neighbors and survives if it has 2 or 3 neighbors.
For instance, in this notation, Conway's Game of Life is denoted 23/3. [2] [3] In the notation used by the Golly open-source cellular automaton package and in the RLE format for storing cellular automaton patterns, a rule is written in the form By/Sx where x and y are the same as in the MCell notation. Thus, in this notation, Conway's Game of ...
In Conway's Game of Life, oscillators had been identified and named as early as 1971. [1] Since then it has been shown that finite oscillators exist for all periods. [2] [3] [4] Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods.
A sample autonomous pattern from Lenia. An animation showing the movement of a glider in Lenia. Lenia is a family of cellular automata created by Bert Wang-Chak Chan. [1] [2] [3] It is intended to be a continuous generalization of Conway's Game of Life, with continuous states, space and time.
Gun and antigun demonstrating the symmetric nature of Day & Night. Day and Night is a cellular automaton rule in the same family as Game of Life.It is defined by rule notation B3678/S34678, meaning that a dead cell becomes live (is born) if it has 3, 6, 7, or 8 live neighbors, and a live cell remains alive (survives) if it has 3, 4, 6, 7, or 8 live neighbors, out of the eight neighbors in the ...