Search results
Results from the WOW.Com Content Network
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
L is the length Re is the Reynolds number and Pr is the Prandtl number. This number is useful in determining the thermally developing flow entrance length in ducts. A Graetz number of approximately 1000 or less is the point at which flow would be considered thermally fully developed. [2]
Entrance length (fluid dynamics) – Distance a flow travels after entering a pipe before fully developed Modon (fluid dynamics) – Sea eddies Shock (fluid dynamics) – term in fluid dynamics Pages displaying wikidata descriptions as a fallback
L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.
In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [ 1 ]
Hydrodynamic entrance length is that part of the tube in which the momentum boundary layer grows and the velocity distribution changes with length. The fixed velocity distribution in the fully developed region is called fully developed velocity profile. The steady-state continuity and conservation of momentum equations in two-dimensional are
Use the Sign-in Helper to locate your username and regain access to your account by entering your recovery mobile number or alternate email address.; To manage and recover your account if you forget your password or username, make sure you have access to the recovery phone number or alternate email address you've added to your AOL account.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).