Search results
Results from the WOW.Com Content Network
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/) is the state of steady internal physical and chemical conditions maintained by living systems. [1] This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance , being kept ...
Energy intake is measured by the amount of calories consumed from food and fluids. [1] Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, [1] and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior.
The HOMA model was originally designed as a special case of a more general structural (HOMA-CIGMA) model that includes the continuous infusion of glucose with model assessment (CIGMA) approach; both techniques use mathematical equations to describe the functioning of the major effector organs influencing glucose/insulin interactions.
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
This is an accepted version of this page This is the latest accepted revision, reviewed on 11 December 2024. List of organ systems in the human body Part of a series of lists about Human anatomy General Features Regions Variations Movements Systems Structures Arteries Bones Eponymous Foramina Glands endocrine exocrine Lymphatic vessels Nerves Organs Systems Veins Muscles Abductors Adductors ...
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
The importance of homeostasis is to regulate the stress levels encountered on the body to reduce allostatic load. Dysfunctional allostasis causes allostatic load to increase which may, over time, lead to disease, sometimes with decompensation of the problem controlled by allostasis. Allostatic load effects can be measured in the body.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]