enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]

  3. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Stochastic gradient descent; Backpropagation;

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant); Levenberg–Marquardt and conjugate gradient (Fletcher–Reeves update, Polak–Ribiére update, Powell–Beale restart, scaled conjugate gradient). [4]

  6. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    For example, the outcome of a game (i.e., whether one player won or lost) can be easily measured without providing labeled examples of desired strategies. Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation ( gradient descent ...

  7. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  8. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    This can perform significantly better than "true" stochastic gradient descent described, because the code can make use of vectorization libraries rather than computing each step separately as was first shown in [6] where it was called "the bunch-mode back-propagation algorithm". It may also result in smoother convergence, as the gradient ...

  9. Neural operators - Wikipedia

    en.wikipedia.org/wiki/Neural_operators

    Neural operators can be trained directly using backpropagation and gradient descent-based methods. Another training paradigm is associated with physics-informed machine learning. In particular, physics-informed neural networks (PINNs) use complete physics laws to fit neural networks to solutions of PDEs.