Search results
Results from the WOW.Com Content Network
The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations. The "pandas" python package provides a "pivot" method which provides for a narrow to wide transformation.
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
In a database, a table is a collection of related data organized in table format; consisting of columns and rows. In relational databases , and flat file databases , a table is a set of data elements (values) using a model of vertical columns (identifiable by name) and horizontal rows , the cell being the unit where a row and column intersect ...
A pivot table is a table of values which are aggregations of groups of individual values from a more extensive table (such as from a database, spreadsheet, or business intelligence program) within one or more discrete categories. The aggregations or summaries of the groups of the individual terms might include sums, averages, counts, or other ...
For example, a table of 128 rows with a Boolean column requires 128 bytes a row-oriented format (one byte per Boolean) but 128 bits (16 bytes) in a column-oriented format (via a bitmap). Another example is the use of run-length encoding to encode a column.
A wide-column store (or extensible record store) is a type of NoSQL database. [1] It uses tables, rows, and columns, but unlike a relational database, the names and format of the columns can vary from row to row in the same table. A wide-column store can be interpreted as a two-dimensional key–value store. [1]
OLAP clients include many spreadsheet programs like Excel, web application, SQL, dashboard tools, etc. Many clients support interactive data exploration where users select dimensions and measures of interest. Some dimensions are used as filters (for slicing and dicing the data) while others are selected as the axes of a pivot table or pivot chart.
In situations where the number of unique values of a column is far less than the number of rows in the table, column-oriented storage allow significant savings in space through data compression. Columnar storage also allows fast execution of range queries (e.g., show all records where a particular column is between X and Y, or less than X.)