Search results
Results from the WOW.Com Content Network
Pile integrity testing using low-strain tests such as the TDR (Transient Dynamic Response) method, is a rapid way of assessing the continuity and integrity of concrete piled foundations. The test measures: pile length, or depth to anomalies; pile head stiffness; pile shaft mobility, which is dependent on pile section and concrete properties
For instance for a circular cylinder of diameter D in oscillatory flow, the reference area per unit cylinder length is = and the cylinder volume per unit cylinder length is =. As a result, F ( t ) {\displaystyle F(t)} is the total force per unit cylinder length:
The test uses a thick-walled sampling tube, with an outside diameter of 5.01 cm (2 in) and an inside diameter of 3.5 cm (1.375 in), and a length of at least 60 cm (24 in). The sampling tube is driven into the ground at the bottom of a borehole by blows from a hammer with a mass of 63.5 kg (140 lb) falling a distance of 75 cm (30 in).
Q dy = ultimate dynamic bearing capacity of driven pile; α = pile driving hammer efficiency; W H = weight of hammer; H = hammer drop; S = inelastic set of piles, in distance pr. hammer blow; S e = elastic set of piles, in distance pr. hammer blow; L = pile length; A = pile end area; E = modulus of elasticity of pile material
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
Construction of a flow net is often used for solving groundwater flow problems where the geometry makes analytical solutions impractical. The method is often used in civil engineering, hydrogeology or soil mechanics as a first check for problems of flow under hydraulic structures like dams or sheet pile walls. As such, a grid obtained by ...
In geotechnical civil engineering, the p–y is a method of analyzing the ability of deep foundations to resist loads applied in the lateral direction. This method uses the finite difference method and p-y graphs to find a solution.
The normal method for splicing is by driving the leader pile first, driving a steel tube (normally 60–100 cm long, with an internal diameter no smaller than the minimum toe diameter) half its length onto the end of the leader pile.