enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

  3. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on. The Nth order RNN connects the first and last node.

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]

  5. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    One origin of RNN was statistical mechanics. In 1972, Shun'ichi Amari proposed to modify the weights of an Ising model by Hebbian learning rule as a model of associative memory, adding in the component of learning. [61] This was popularized as the Hopfield network by John Hopfield(1982). [62] Another origin of RNN was neuroscience.

  7. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Comparison of the data flow in CNN, RNN, and self-attention. The seq2seq method developed in the early 2010s uses two neural networks: an encoder network converts an input sentence into numerical vectors, and a decoder network converts those vectors to sentences in the target language.

  8. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    The RNN hierarchy can be collapsed into a single RNN, by distilling a higher level chunker network into a lower level automatizer network. [67] [68] [31] In 1993, a neural history compressor solved a "Very Deep Learning" task that required more than 1000 subsequent layers in an RNN unfolded in time. [69] The "P" in ChatGPT refers to such pre ...

  9. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    The Echo State Network (ESN) [4] belongs to the Recurrent Neural Network (RNN) family and provide their architecture and supervised learning principle. Unlike Feedforward Neural Networks, Recurrent Neural Networks are dynamic systems and not functions.