Search results
Results from the WOW.Com Content Network
Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds: Charge-neutral ... Cations. Nitrosonium (N≡O + or [NO] +)
In general, nitric oxide is a poor nitrosant, Traube-type reactions notwithstanding. But atmospheric oxygen can oxidize nitric oxide to nitrogen dioxide, which does nitrosate. Alternatively cupric ions catalyze disproportionation into NO + and NO −. [5]
Nitric oxide (nitrogen oxide or nitrogen monoxide [1]) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen . Nitric oxide is a free radical : it has an unpaired electron , which is sometimes denoted by a dot in its chemical formula ( • N=O or • NO).
One other possible oxide that has not yet been synthesised is oxatetrazole (N 4 O), an aromatic ring. [15] Nitrous oxide (N 2 O), better known as laughing gas, is made by thermal decomposition of molten ammonium nitrate at 250 °C. This is a redox reaction and thus nitric oxide and nitrogen are also produced as byproducts.
Nitrogen oxides are released during manufacturing of nitrogen fertilizers. Though nitrous oxide is emitted during its application, it is then reacted in atmosphere to form nitrogen oxides. This third source is attributed to the reaction of atmospheric nitrogen, N 2, with radicals such as C, CH, and CH 2 fragments derived from fuel, [26] rather ...
Nitrogen oxides readily interconvert between various forms, some of which may act as completing ligands. The redox reaction of nitrosonium and the metal can give rise to nitrogen oxide which forms strong metal nitrosyl complexes ; nitronium ions (NO 2 + ) are similarly observed.
Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System.
The current "trinity" of gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, have ironically been discarded as useless toxic gases throughout history. These molecules are a classic example of dose-dependent hormesis such that low-dose is beneficial whereas absence or excessive dosing is toxic.